

School District of Marshfield Course Syllabus

Course Name: Algebra II Honors Length of Course: 1 Year Credit: 1

Program Goal:

The School District of Marshfield Mathematics Program will prepare students for college and career in the 21st century by ensuring *all* students learn based on skills and knowledge needed to succeed in post-secondary education/training, career, and life. The 4K through High School Mathematics curriculum is designed to support every student in achieving success. Students will be placed in to the driver's seat. Innovative educators will tailor instruction to student need through engaging learning activities and relevant assessment.

Course Description:

This course involves the study of linear functions, complex numbers, absolute value equation, systems of equations, matrices, quadratic equations and functions, polynomial equations and functions, inverses and radical functions, exponential and logarithmic functions, trigonometric functions, rational functions, conic sections, sequence and series, probability, and statistics.

NOTE: Students are required to have a graphing calculator.

PREREQUISITE: Successful Completion of Geometry H or Algebra I H concurrent with Geometry R/H or Instructor's Consent.

Standards:		
Wisconsin Standards for Mathematic	al Practice (MP)	
MP: 1, 2, 3, 4, 5, 6, 7, 8	 Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Use appropriate tools strategically. Attend to precision. Look for and make use of structure. 	
	8. Look for and express regularity in repeated reasoning.	
Wisconsin Standards for Mathematic	s- Number and Quantity	
Extend the properties of exponents to rational exponents. N-RN: 1, 2	1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we	
	define 5 ¹³ to be the cube root of 5 because we want $(5^{13})^3 = 5(^{1/3})^3$ to hold, so $(5^{1/3})^3$ must equal 5. 2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.	
Quantities (N-Q)		
Reason quantitatively and use units to solve problems. N-Q: 2	2. Define appropriate quantities for the purpose of descriptive modeling.	
The Complex Number System (N-CN)		
Perform arithmetic operations with complex numbers. N-CN: 1, 2	 Know there is a complex number <i>i</i> such that <i>i</i>² = -1, and every complex number has the form <i>a</i> + <i>bi</i> with <i>a</i> and <i>b</i> real. Use the relation <i>i</i>² = -1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. 	
Use complex numbers in polynomial identities and equations. N-CN: 7	7. Solve quadratic equations with real coefficients that have complex solutions.	
Vector and Matrix Quantities (N-VM)		
Perform operations on matrices and use matrices in applications. N-VM: 6, 7, 8, 9, 10	 6. (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network. 7. (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled. 8. (+) Add, subtract, and multiply matrices of appropriate dimensions. 9. (+) Understand that, unlike multiplication of numbers. 	
	matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.	

	10. (+) Understand that the zero and identity matrices play	
	a role in matrix addition and multiplication similar to the	
	role of 0 and 1 in the real numbers. The determinant of a	
	square matrix is nonzero if and only if the matrix has a	
	multiplicative inverse.	
Wisconsin Standards for Mathematic	s- Algebra	
Seeing Structure in Expressions (A-SSE)		
Interpret the structure of expressions	1 Interpret expressions that represent a quantity in terms	
A-SSE ¹ 1a 1b 2	of its context	
11 SSL. 10, 2	a Interpret parts of an expression such as terms	
	factors and coefficients	
	b. Interpret complicated expressions by viewing one	
	or more of their parts as a single entity. For	
	example, interpret $P(1+r)^n$ as the product of P and	
	a factor not depending on P.	
	2. Use the structure of an expression to identify ways to	
	rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus	
	recognizing it as a difference of squares that can be	
	factored as $(x^2 - y^2)(x^2 + y^2)$.	
Write expressions in equivalent forms	3. Choose and produce an equivalent form of an	
to solve problems.	expression to reveal and explain properties of the quantity	
A-SSE: 3a, 3b, 3c, 4	represented by the expression.	
	a. Factor a quadratic expression to reveal the zeros	
	of the function it defines.	
	b. Complete the square in a quadratic expression to	
	reveal the maximum or minimum value of the	
	function it defines.	
	c. Use the properties of exponents to transform	
	expressions for exponential functions. For	
	example, the expression 1.15^{t} can be rewritten as	
	$(1.15^{1/12})^{124} \approx 1.012^{124}$ to reveal the approximate	
	equivalent monthly interest rate if the annual rate	
	<i>IS 15%.</i>	
	4. Derive the formula for the sum of a finite geometric	
	when the common ratio is not 1), and use the formula to	
	solve problems. For example, calculate morigage	
Arithmatic with Polynomials and Potion	al Expressions (A ADD)	
Perform arithmetic operations on	1 Understand that polynomials form a system analogous	
nolynomials	to the integers, namely, they are closed under the	
A-APR · 1	operations of addition subtraction and multiplication:	
	add, subtract, and multiply polynomials.	
Understand the relationship between	2. Know and apply the Remainder Theorem: For a	
zeros and factors of polynomials.	polynomial $p(x)$ and a number a, the remainder on	
A-APR: 2, 3	division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$	
	is a factor of $p(x)$.	
	3. Identify zeros of polynomials when suitable	
	factorizations are available, and use the zeros to construct	
	a rough graph of the function defined by the polynomial.	

Use polynomial identities to solve	4 Prove polynomial identities and use them to describe	
nrohloms	numerical relationships. For example, the polynomial	
$\Lambda \Lambda DD \cdot \Lambda G$	identity $(x^2 + y^2)^2 - (x^2 - y^2)^2 + (2xy)^2$ can be used to	
A-AFK. 4, 0	(x + y) = (x - y) + (2xy) can be used to	
	generale Pylhagorean triples.	
	6. Rewrite simple rational expressions in different forms;	
	write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$,	
	b(x), $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$	
	less than the degree of $b(x)$, using inspection, long	
	division, or, for the more complicated examples, a	
	computer algebra system.	
Creating Equations (A-CED)		
Create equations that describe	1. Create equations and inequalities in one variable and	
numbers or relationships.	use them to solve problems. <i>Include equations arising</i>	
A-CED: 1, 2, 3, 4	from linear and quadratic functions, and simple rational	
	and exponential functions.	
	2. Create equations in two or more variables to represent	
	relationships between quantities: graph equations on	
	coordinate axes with labels and scales	
	3 Papersont constraints by equations or inequalities and	
	by systems of equations and/or inequalities, and interpret	
	solutions as visble or nonvisble ontions in a modeling	
	solutions as viable or nonviable options in a modeling	
	context. For example, represent inequalities describing	
	nutritional and cost constraints on combinations of	
	<i>different foods.</i>	
	4. Rearrange formulas to highlight a quantity of interest,	
	using the same reasoning as in solving equations. For	
	example, rearrange Ohm's law V = IR to highlight	
	resistance R.	
Reasoning with Equations and Inequality	ies (A-REI)	
Understand solving equations as a	1. Explain each step in solving a simple equation as	
process of reasoning and explain	following from the equality of numbers asserted at the	
the reasoning.	previous step, starting from the assumption that the	
A-REI: 1, 2	original equation has a solution. Construct a viable	
	argument to justify a solution method.	
	2 Solve simple rational and radical equations in one	
	variable and give examples showing how extraneous	
	solutions may arise	
Solve equations and inequalities in one	4 Solve quadratic equations in one variable	
voriable	4. Solve quadratic equations in one variable.	
A DEL do dh	a. Use the method of completing the square to	
A-KEI. 4a, 40	transform any quadratic equation in x into an equation of the form $(x - x)^2$ is that has the same	
	equation of the form $(x - p)^2 = q$ that has the same	
	solutions. Derive the quadratic formula from this	
	form.	
	b. Solve quadratic equations by inspection (e.g., for	
	$x^2 = 49$), taking square roots, completing the	
	square, the quadratic formula and factoring, as	
	appropriate to the initial form of the equation.	
	Recognize when the quadratic formula gives	
	complex solutions and write them as $a \pm bi$ for	
1	real numbers a and b	

Solve systems of equations	7 Solve a simple system consisting of a linear equation	
A DEI 7	and a quadratic equation in two variables algebraically and	
A-RLI. /	graphically. For example find the points of intersection	
	between the line $y = -3x$ and the circle $x^2 + y^2 = 3$	
Poprosent and solve equations and	11 Explain why the x coordinates of the points where the	
inequalities graphically	graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are	
A DEL 11	graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions	
A-KEI. 11	the solutions of the equation $f(x) = g(x)$, find the solutions	
	functions, make tables of values, or find successive	
	runctions, make tables of values, of find successive	
	approximations. Include cases where $f(x)$ and/or $g(x)$ are	
	and logorithmic functions	
	and logarithmic functions.	
Wisconsin Standards for Mathematic	cs- Functions	
Interpreting Functions (F-IF)		
Understand the concept of a function	1. Understand that a function from one set (called the	
and use function notation.	domain) to another set (called the range) assigns to each	
F-IF: 1, 2, 3	element of the domain exactly one element of the range. If	
	f is a function and x is an element of its domain, then $f(x)$	
	denotes the output of f corresponding to the input x . The	
	graph of <i>f</i> is the graph of the equation $y = f(x)$.	
	2. Use function notation, evaluate functions for inputs in	
	their domains, and interpret statements that use function	
	notation in terms of a context.	
	3. Recognize that sequences are functions, sometimes	
	defined recursively, whose domain is a subset of the	
	integers. For example, the Fibonacci sequence is defined	
	recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for n	
	<i>≥1.</i>	
Interpret functions that arise in	4. For a function that models a relationship between two	
applications in terms of the context.	quantities, interpret key features of graphs and tables in	
F-IF: 4, 5	terms of the quantities, and sketch graphs showing key	
	features given a verbal description of the relationship. <i>Key</i>	
	features include: intercepts; intervals where the function	
	is increasing, decreasing, positive, or negative; relative	
	maximums and minimums; symmetries; end behavior; and	
	periodicity.	
	5. Relate the domain of a function to its graph and, where	
	applicable, to the quantitative relationship it describes.	
	For example, if the function $h(n)$ gives the number of	
	person-hours it takes to assemble n engines in a factory,	
	then the positive integers would be an appropriate domain	
	for the function.	
Analyze functions using different	/. Graph functions expressed symbolically and show key	
representations.	teatures of the graph, by hand in simple cases and using	
F-IF: 7a, 7b, 7c, 7d, 7e, 8a, 8b, 9	technology for more complicated cases.	
	a. Graph linear and quadratic functions and show	
	intercepts, maxima, and minima.	
	b. Graph square root, cube root, and piecewise-	
	defined functions, including step functions and	
	absolute value functions.	

	c Graph polynomial functions identifying zeros		
	when suitable factorizations are available, and		
	showing and behavior		
	showing end behavior.		
	d. (+) Graph rational functions, identifying zeros and		
	asymptotes when suitable factorizations are		
	available, and showing end behavior.		
	e. Graph exponential and logarithmic functions,		
	showing intercepts and end behavior, and		
	trigonometric functions, showing period, midline,		
	and amplitude.		
	8. Write a function defined by an expression in different		
	but equivalent forms to reveal and explain different		
	properties of the function.		
	a Use the process of factoring and completing the		
	a. Ose the process of factoring and completing the		
	square in a quadratic function to show zeros,		
	extreme values, and symmetry of the graph, and		
	interpret these in terms of a context.		
	b. Use the properties of exponents to interpret		
	expressions for exponential functions. For		
	example, identify percent rate of change in		
	functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y =$		
	$(1.01)^{12t}$, $y = (1.2)^{t/10}$, and classify them as		
	representing exponential growth or decay.		
	9. Compare properties of two functions each represented		
	in a different way (algebraically, graphically, numerically		
	in tables or by verbal descriptions) For example given a		
	araph of one auditatic function and an algebraic		
	arpression for another say which has the larger		
	expression for another, say which has the larger		
D	maximum.		
Building Functions (F-BF)			
Build a function that models a	1. Write a function that describes a relationship between		
relationship between two quantities.	two quantities.		
F-BF: 1a, 1b, 2	a. Determine an explicit expression, a recursive		
	process, or steps for calculation from a context.		
	b. Combine standard function types using arithmetic		
	operations. For example, build a function that		
	models the temperature of a cooling body by		
	adding a constant function to a decaying		
	exponential, and relate these functions to the		
	model.		
	2 Write arithmetic and geometric sequences both		
	recursively and with an explicit formula use them to		
	model situations and translate between the two forms		
Build now functions from ovicting	1 A situations, and translate between the two forms. 2 Identify the effect on the graph of rankging $f(x)$ by $f(x)$		
functions	5. Identify the effect on the graph of replacing $f(x)$ by $f(x)$		
E DE 2 4 5	$+\kappa, \kappa J(x), J(\kappa x), \text{ and } J(x + \kappa) \text{ for specific values of } \kappa \text{ (both})$		
г-бг: 3, 4а, 3	positive and negative); find the value of k given the		
	graphs. Experiment with cases and illustrate an		
	explanation of the effects on the graph using technology.		
	Include recognizing even and odd functions from their		
	graphs and algebraic expressions for them.		

	a. Solve an equation of the form $f(x) = c$ for a simple	
	function f that has an inverse and write an	
	expression for the inverse. For example, $f(x) = 2x^3$	
	$or f(x) = (x+1)/(x-1)$ for $x \neq 1$.	
	5. (+) Understand the inverse relationship between	
	exponents and logarithms and use this relationship to	
	solve problems involving logarithms and exponents	
Linear Quadratic and Exponential Mod	els (F-L F)	
Construct and compare linear	2 Construct linear and exponential functions including	
aughteric and exponential models	arithmetic and geometric sequences given a graph a	
and solve problems	description of a relationship, or two input output pairs	
E L E $\cdot 2$ A	(include reading these from a table)	
1°-LL. 2, 4	(Include reading these from a table).	
	4. For exponential models, express as a logarithm me solution to $ab^{ct} = d$ where a , c , and d are numbers and the	
	solution to $ab^{-} = d$ where a, c, and d are numbers and the	
	base bis 2, 10, of e, evaluate the logarithm using	
Internet expressions for functions in	5. Interment the nerometers in a linear or exponential	
torma of the situation they model	5. Interpret the parameters in a linear or exponential	
E L E 5	runction.	
F-LE: 5		
Figure functions (F-1F)	1. Understand radion measure of an analy as the langth of	
Extend the domain of trigonometric	1. Understand radian measure of an angle as the length of	
Functions using the unit circle.	the arc on the unit circle subtended by the angle.	
F-1F: 1, 2	2. Explain now the unit circle in the coordinate plane	
	enables the extension of trigonometric functions to all real	
	numbers, interpreted as radian measures of angles	
	traversed counterclockwise around the unit circle.	
Model periodic phenomena with	5. Unoose trigonometric functions to model periodic	
trigonometric functions.	phenomena with specified amplitude, frequency, and	
F-1F: 5		
Prove and apply trigonometric	8. Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and	
identities.	use it to find $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ given $\sin(\theta)$, $\cos(\theta)$,	
F-TF: 8	or $tan(\theta)$ and the quadrant of the angle.	
Wisconsin Standards for Mathematic	s- Geometry	
Expressing Geometric Properties with E	quations (G-GPE)	
Translate between the geometric	1. Derive the equation of a circle of given center and	
description and the equation for a conic	radius using the Pythagorean Theorem; complete the	
section.	square to find the center and radius of a circle given by an	
G-GPE: 1, 2	equation.	
	2. Derive the equation of a parabola given a focus and	
	directrix.	
Wisconsin Standards for Mathematic	s- Statistics and Probability	
Interpreting Categorical and Quantitativ	ve Data (S-ID)	
Summarize, represent, and interpret	4. Use the mean and standard deviation of a data set to fit	
data on a single count or measurement	it to a normal distribution and to estimate population	
variable.	nercentages Recognize that there are data sets for which	
S-ID· 4	such a procedure is not appropriate. Use calculators	
	spreadsheets and tables to estimate areas under the	
	normal curve	

Making Inferences and Justifying Conclusions (S-IC)		
Understand and evaluate random	1. Understand statistics as a process for making inferences	
processes underlying statistical	about population parameters based on a random sample	
experiments.	from that population.	
S-IC: 1, 2	2. Decide if a specified model is consistent with results	
	from a given data-generating process, e.g., using	
	simulation. For example, a model says a spinning coin	
	falls heads up with probability 0.5. Would a result of 5	
	tails in a row cause you to question the model?	
Make inferences and justify conclusions	3. Recognize the purposes of and differences among	
from sample surveys, experiments, and	sample surveys, experiments, and observational studies;	
observational studies.	explain how randomization relates to each.	
S-IC: 3, 4, 5, 6	4. Use data from a sample survey to estimate a population	
	mean or proportion; develop a margin of error through the	
	use of simulation models for random sampling.	
	5. Use data from a randomized experiment to compare two	
	treatments; use simulations to decide if differences	
	between parameters are significant.	
	6. Evaluate reports based on data.	

Key Vocabulary:			
Conditional	Geometric Sequences	Properties of	Arithmetic Sequences
Probability	and Series	Logarithms	and Series
Factor Theorem	Roots/Zeros/Solutions	Common Logarithms	Base of e
Square Root	Rational Zero	Completing the	Inverse
Functions	Theorem	Square	Operations/Functions
Parent Functions	Exponents	Natural Logarithms	Transformations
Complex Numbers	Augmented Matrix	Reciprocal Functions	Control Group
Reflection	Nth Root Functions	Logarithms	Correlation
Synthetic	Radicals	Variation Functions	Causation
Discriminant	Rational	Conjugate	Statistical Analysis
Remainder Theorem	Radical Functions	Parabolas	Polynomials
Coefficient Matrix	Common Difference	Step Function	Dimensions
Explicit Definition	Exponential Functions	Interval Notation	Matrix
Set Builder Notation	Sigma Notation	Piecewise Function	Recursive Definition
Reduced Row	Completing the	Degree of a	Rational Root
Echelon Form	Square	Polynomial	Theorem
Polynomial Function	Pascal's Triangle	Imaginary Number	Complex Conjugate
Complex Number	Zero of a Function	Quadratic Function	Standard Form
Vertex Form	Rational Function	Binomial Theorem	Remainder Theorem
Exponential Function	Synthetic Division	Turning Point	Asymptote
Radian	Logarithmic Function	Extraneous Solution	Inverse Variation
Unit Circle	Composite Function	Index	Inverse Function
Independent Events	Mutually Exclusive	Standard Deviation	Periodic Function

Experimental Group	Scalar Multiplication	Trigonometric	Reciprocal
		Identity	Trigonometric
			Function
Standard Position	Statistic	Random Sample	Probability
Law of Sines	Law of Cosines	Conic Section	Ellipse
Hyperbola	Transverse Axis	Constant Matrix	Identity Matrix
Inverse Matrix	Control Group	Zero Matrix	Square Matrix
Variable Matrix	Margin of Error	Normal Distribution	Experiment

Topics/Content Outline- Units and Themes:

Quarter 1:

- Linear Functions and Systems
- Quadratic Functions and Equations
- Polynomial Functions

Quarter 2:

- Rational Functions
- Rational Exponents and Radical Functions
- Exponentials and Logarithmic Functions

Quarter 3:

- Trigonometric Functions
- Trigonometric Equations and Identities
- Conic Sections

Quarter 4:

- Matrices
- Data Analysis and Statistics
- Probability

Primary Resource(s):	
enVision Algebra 2	Math XL, Pearson Realize
Prentice Hall	
ISBN: 0-328-93159-4	
© 2018	